Combining multiple classifications of chemical structures using consensus clustering.
نویسندگان
چکیده
Consensus clustering involves combining multiple clusterings of the same set of objects to achieve a single clustering that will, hopefully, provide a better picture of the groupings that are present in a dataset. This Letter reports the use of consensus clustering methods on sets of chemical compounds represented by 2D fingerprints. Experiments with DUD, IDAlert, MDDR and MUV data suggests that consensus methods are unlikely to result in significant improvements in clustering effectiveness as compared to the use of a single clustering method.
منابع مشابه
Voting-based consensus clustering for combining multiple clusterings of chemical structures
Many consensus clustering methods have been applied in different areas such as pattern recognition, machine learning, information theory and bioinformatics. However, few methods have been used for chemical compounds clustering. In this paper, an information theory and voting based algorithm (Adaptive Cumulative Voting-based Aggregation Algorithm A-CVAA) was examined for combining multiple clust...
متن کاملانتخاب اعضای ترکیب در خوشهبندی ترکیبی با استفاده از رأیگیری
Clustering is the process of division of a dataset into subsets that are called clusters, so that objects within a cluster are similar to each other and different from objects of the other clusters. So far, a lot of algorithms in different approaches have been created for the clustering. An effective choice (can combine) two or more of these algorithms for solving the clustering problem. Ensemb...
متن کاملUsing graph-based consensus clustering for combining K-means clustering of heterogeneous chemical structures
Consensus clustering methods are motivated by the success of combining multiple classifiers in many areas. In this paper, graph-based consensus clustering is used to improve the quality of chemical compound clustering by enhancing the robustness, novelty, consistency and stability of individual clusterings. For this purpose, HyperGraph Partitioning Algorithm (HGPA) [1], was applied. The cluster...
متن کاملIntegrating Microarray Data by Consensus Clustering
With the exploding volume of microarray experiments comes increasing interest in mining repositories of such data. Meaningfully combining results from varied experiments on an equal basis is a challenging task. Here we propose a general method for integrating heterogeneous data sets based on the consensus clustering formalism. Our method analyzes source-specific clusterings and identifies a con...
متن کاملA Survey of Consensus Clustering
This chapter describes the problem of combining multiple partitionings of a set of objects into a single consolidated clustering without accessing the features or algorithms that determine these partitionings – popularly known as the problem of “consensus clustering”. We illustrate different algorithms for solving the consensus clustering problem. The notion of dissimilarity between a pair of c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioorganic & medicinal chemistry
دوره 20 18 شماره
صفحات -
تاریخ انتشار 2012